35 research outputs found

    Molecular evolution and diversification of the Argonaute family of proteins in plants

    Get PDF
    BACKGROUND: Argonaute (AGO) proteins form the core of the RNA-induced silencing complex, a central component of the smRNA machinery. Although reported from several plant species, little is known about their evolution. Moreover, these genes have not yet been cloned from the ecological model plant, Nicotiana attenuata, in which the smRNA machinery is known to mediate important ecological traits. RESULTS: Here, we not only identify 11 AGOs in N. attenuata, we further annotate 133 genes in 17 plant species, previously not annotated in the Phytozome database, to increase the number of plant AGOs to 263 genes from 37 plant species. We report the phylogenetic classification, expansion, and diversification of AGOs in the plant kingdom, which resulted in the following hypothesis about their evolutionary history: an ancestral AGO underwent duplication events after the divergence of unicellular green algae, giving rise to four major classes with subsequent gains/losses during the radiation of higher plants, resulting in the large number of extant AGOs. Class-specific signatures in the RNA-binding and catalytic domains, which may contribute to the functional diversity of plant AGOs, as well as context-dependent changes in sequence and domain architecture that may have consequences for gene function were found. CONCLUSIONS: Together, the results demonstrate that the evolution of AGOs has been a dynamic process producing the signatures of functional diversification in the smRNA pathways of higher plants. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-014-0364-6) contains supplementary material, which is available to authorized users

    A highly conserved protein of unknown function in Sinorhizobium meliloti affects sRNA regulation similar to Hfq

    Get PDF
    The SMc01113/YbeY protein, belonging to the UPF0054 family, is highly conserved in nearly every bacterium. However, the function of these proteins still remains elusive. Our results show that SMc01113/YbeY proteins share structural similarities with the MID domain of the Argonaute (AGO) proteins, and might similarly bind to a small-RNA (sRNA) seed, making a special interaction with the phosphate on the 5′-side of the seed, suggesting they may form a component of the bacterial sRNA pathway. Indeed, eliminating SMc01113/YbeY expression in Sinorhizobium meliloti produces symbiotic and physiological phenotypes strikingly similar to those of the hfq mutant. Hfq, an RNA chaperone, is central to bacterial sRNA-pathway. We evaluated the expression of 13 target genes in the smc01113 and hfq mutants. Further, we predicted the sRNAs that may potentially target these genes, and evaluated the accumulation of nine sRNAs in WT and smc01113 and hfq mutants. Similar to hfq, smc01113 regulates the accumulation of sRNAs as well as the target mRNAs. AGOs are central components of the eukaryotic sRNA machinery and conceptual parallels between the prokaryotic and eukaryotic sRNA pathways have long been drawn. Our study provides the first line of evidence for such conceptual parallels. Furthermore, our investigation gives insights into the sRNA-mediated regulation of stress adaptation in S. meliloti

    The Role of WRKY Transcription Factors in Plant Immunity[W]

    No full text

    Complex regulation of microRNAs in roots of competitively-grown isogenic Nicotiana attenuata plants with different capacities to interact with arbuscular mycorrhizal fungi

    No full text
    Abstract Background Nicotiana attenuata is an ecological model plant whose 2.57 Gb genome has recently been sequenced and assembled and for which miRNAs and their genomic locations have been identified. To understand how this plant’s miRNAs are reconfigured during plant-arbuscular mycorrhizal fungal (AMF) interactions and whether hostplant calcium- and calmodulin dependent protein kinase (CCaMK) expression which regulates the AMF interaction also modulates miRNAs levels and regulation, we performed a large-scale miRNA analysis of this plant-AMF interaction. Results Next generation sequencing of miRNAs in roots of empty vector (EV) N. attenuata plants and an isogenic line silenced in CCaMK expression (irCCaMK) impaired in AMF-interactions grown under competitive conditions with and without AMF inoculum revealed a total of 149 unique miRNAs: 67 conserved and 82 novel ones. The majority of the miRNAs had a length of 21 nucleotides. MiRNA abundances were highly variable ranging from 400 to more than 25,000 reads per million. The miRNA profile of irCCaMK plants impaired in AMF colonization was distinct from fully AMF-functional EV plants grown in the same pot. Six conserved miRNAs were present in all conditions and accumulated differentially depending on treatment and genotype; five (miR6153, miR403a-3p, miR7122a, miR167-5p and miR482d, but not miR399a-3p) showed the highest accumulation in AMF inoculated EV plants compared to inoculated irCCaMK plants. Furthermore, the accumulation patterns of sequence variants of selected conserved miRNAs showed a very distinct pattern related to AMF colonization - one variant of miR473-5p specifically accumulated in AMF-inoculated plants. Also abundances of miR403a-3p, miR171a-3p and one of the sequence variants of miR172a-3p increased in AMF-inoculated EV compared to inoculated irCCaMK plants and to non-inoculated EV plants, while miR399a-3p was most strongly enriched in AMF inoculated irCCaMK plants grown in competition with EV. The analysis of putative targets of selected miRNAs revealed an involvement in P starvation (miR399), phytohormone signaling (Nat-R-PN59, miR172, miR393) and defense (e.g. miR482, miR8667, Nat-R-PN-47). Conclusions Our study demonstrates (1) a large-scale reprograming of miRNAs induced by AMF colonization and (2) that the impaired AMF signaling due to CCaMK silencing and the resulting reduced competitive ability of irCCaMK plants play a role in modulating signal-dependent miRNA accumulation

    RNA-Directed RNA Polymerase3 from Nicotiana attenuata Is Required for Competitive Growth in Natural Environments1[W][OA]

    Get PDF
    SDE1/SGS2/RdR6, a putative RNA-directed RNA polymerase, maintains plant defenses against viruses in Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana, but its function has not been examined in natural habitats or with respect to other ecological stresses. We evaluated the organismic-level function of this gene (NaRdR3) in an ecological model species, Nicotiana attenuata, by transforming plants to stably silence RdR3 (irRdR3). Minor morphological changes (elongated leaves and reduced leaf number) and increased susceptibility to tobamoviruses typical of RdR6 silencing in other species were observed, but these changes did not alter the reproductive performance of singly grown plants (measured as seed and capsule production) or herbivore resistance in laboratory trials. 454-sequencing of irRdR3's small RNA (smRNA) transcriptome revealed that 21- and 24-nucleotide smRNAs were not affected, but the abundance of 22- to 23-nucleotide smRNAs was reduced. When planted in pairs with wild-type plants in N. attenuata's natural habitat in the Great Basin Desert, irRdR3 plants produced shorter stalks with significantly reduced flower and capsule numbers, but did not influence the ability of plants to resist the native herbivore community, indicating that silencing RdR3 reduced a plant's competitive ability. We tested this hypothesis in the glasshouse by planting irRdR3 and wild-type pairs in communal containers; again irRdR3 plants had severely reduced stalk elongation and reproductive measures. The reduced competitive ability of irRdR3 plants was associated with altered phytohormone homeostasis, especially as reflected in the distribution of auxin. We suggest that RdR3 helps to regulate hormone balance when plants compete with conspecifics in natural environments

    Genome-wide characterization of cellulases from the hemi-biotrophic plant pathogen, Bipolaris sorokiniana, reveals the presence of a highly stable GH7 endoglucanase

    No full text
    Abstract Background Bipolaris sorokiniana is a filamentous fungus that causes spot blotch disease in cereals like wheat and has severe economic consequences. However, information on the identities and role of the cell wall-degrading enzymes (CWDE) in B. sorokiniana is very limited. Several fungi produce CWDE like glycosyl hydrolases (GHs) that help in host cell invasion. To understand the role of these CWDE in B. sorokiniana, the first step is to identify and annotate all possible genes of the GH families like GH3, GH6, GH7, GH45 and AA9 and then characterize them biochemically. Results We confirmed and annotated the homologs of GH3, GH6, GH7, GH45 and AA9 enzymes in the B. sorokiniana genome using the sequence and domain features of these families. Quantitative real-time PCR analyses of these homologs revealed that the transcripts of the BsGH7-3 (3rd homolog of the GH 7 family in B. sorokiniana) were most abundant. BsGH7-3, the gene of BsGH7-3, was thus cloned into pPICZαC Pichia pastoris vector and expressed in X33 P. pastoris host to be characterized. BsGH7-3 enzyme showed a temperature optimum of 60 °C and a pHopt of 8.1. BsGH7-3 was identified to be an endoglucanase based on its broad substrate specificity and structural comparisons with other such endoglucanases. BsGH7-3 has a very long half-life and retains 100% activity even in the presence of 4 M NaCl, 4 M KCl and 20% (v/v) ionic liquids. The enzyme activity is stimulated up to fivefold in the presence of Mn+2 and Fe+2 without any deleterious effects on enzyme thermostability. Conclusions Here we reanalysed the B. sorokiniana genome and selected one GH7 enzyme for further characterization. The present work demonstrates that BsGH7-3 is an endoglucanase with a long half-life and no loss in activity in the presence of denaturants like salt and ionic liquids, and lays the foundation towards exploring the Bipolaris genome for other cell wall-degrading enzymes

    The Sinorhizobium meliloti RNA Chaperone Hfq Mediates Symbiosis of S. meliloti and Alfalfa.

    No full text
    Equal contribution Barra-Bily L, Pandey SPInternational audienceThere exist commonalities between symbiotic Sinorhizobium meliloti and pathogenic Brucella bacteria in terms of extensive gene synteny and the requirements for intracellular survival in their respective hosts. The RNA chaperone Hfq is essential for virulence for several bacterial groups, including Brucella; however, its role in S. meliloti has not been investigated. Our studies of an S. meliloti loss-of-function hfq mutant have revealed that Hfq plays a key role in the establishment of the symbiosis between S. meliloti and its host Medicago sativa. S. meliloti Hfq is involved in controlling the population density under a free-living state and affects the growth parameters and nodulation. An hfq mutant poorly colonizes the infection threads that are necessary for the bacteria to invade the developing nodule. An hfq mutant is severely impaired in its ability to invade plant cells within the nodule, which leads to the formation of small, ineffective nodules unable to fix nitrogen. In culture, the hfq mutant did not accumulate transcripts of nifA, which encodes a key regulator necessary for nitrogen fixation. Hfq may be involved in regulation of several proteins relevant to hfq mutant phenotypes. The crucial role of Hfq in symbiosis suggests that small regulatory RNAs are important for its interactions with its plant host

    Central role for RNase YbeY in Hfq-dependent and Hfq-independent small-RNA regulation in bacteria

    Get PDF
    Background: Conceptual parallels exist between bacterial and eukaryotic small-RNA (sRNA) pathways, yet relatively little is known about which protein may recognize and recruit bacterial sRNAs to interact with targets. In eukaryotes, Argonaute (AGO) proteins discharge such functions. The highly conserved bacterial YbeY RNase has structural similarities to the MID domain of AGOs. A limited study had indicated that in Sinorhizobium meliloti the YbeY ortholog regulates the accumulation of sRNAs as well as the target mRNAs, raising the possibility that YbeY may play a previously unrecognized role in bacterial sRNA regulation. Results: We have applied a multipronged approach of loss-of-function studies, genome-wide mRNA and sRNA expression profiling, pathway analysis, target prediction, literature mining and network analysis to unravel YbeY-dependent molecular responses of E. coli exposed to hydroxyurea (HU). Loss of ybeY function, which results in a marked resistance to HU, had global affects on sRNA-mediated gene expression. Of 54 detectable E. coli sRNAs in our microarray analysis, 30 sRNAs showed a differential expression upon HU stress, of which 28 sRNAs displayed a YbeY-dependent change in expression. These included 12 Hfq-dependent and 16 Hfq-independent sRNAs. We successfully identified at least 57 experimentally inferred sRNA-mRNA relationships. Further applying a 'context likelihood of relatedness' algorithm, we reverse engineered the YbeY-dependent Hfq-dependent sRNA-mRNA network as well as YbeY-dependent Hfq-independent sRNA-mRNA network. Conclusion: YbeY extensively modulates Hfq-dependent and independent sRNA-mRNA interactions. YbeY-dependent sRNAs have central roles in modulating cellular response to HU stress.National Institutes of Health (U.S.) (Grant R01 CA021615)National Institutes of Health (U.S.) (Grant GM31010)National Institutes of Health (U.S.) (Grant P30 ES002019)Howard Hughes Medical Institut

    Proteomic Alterations Explain Phenotypic Changes in Sinorhizobium meliloti Lacking the RNA Chaperone Hfq▿ †

    No full text
    The ubiquitous bacterial RNA-binding protein Hfq is involved in stress resistance and pathogenicity. In Sinorhizobium meliloti, Hfq is essential for the establishment of symbiosis with Medicago sativa and for nitrogen fixation. A proteomic analysis identifies 55 proteins with significantly affected expression in the hfq mutant; most of them are involved in cell metabolism or stress resistance. Important determinants of oxidative stress resistance, such as CysK, Gsh, Bfr, SodC, KatB, KatC, and a putative peroxiredoxine (SMc00072), are downregulated in the hfq mutant. The hfq mutant is affected for H2O2, menadione, and heat stress resistance. Part of these defects could result from the reductions of rpoE1, rpoE2, rpoE3, and rpoE4 expression levels in the hfq mutant. Some proteins required for efficient symbiosis are reduced in the hfq mutant, contributing to the drastic defect in nodulation observed in this mutant
    corecore